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Introduction and Course Overview
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Plan for Today

• Applications of Deep Learning

• Why Deep Learning?

• How We Figured out Deep Learning

• Course Logistics
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What Interested You in this Class?
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ImageNet Challenge 2012

Source: https://www.image-net.org/static_files/files/ilsvrc2012.pdf 4
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ImageNet
Categories
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2012 Results 
(Classification)
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AlphaGo (2016)

Google’s Computer Program Beats Lee Se-dol in Go Tournament

Sources:

https://www.nytimes.com/2016/03/10/world/asia/google-alphago-lee-se-dol.html

Lee Sedol vs AlphaGo Move 37 reactions and analysis 7
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Emotion Identification (2019)
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C. A. C. Holland, N. C. Ebner, T. Lin, and G. R. Samanez-Larkin, “Emotion identification across adulthood using the Dynamic FACES database of emotional 
expressions in younger, middle aged, and older adults,” Cognition and Emotion, vol. 33, no. 2, pp. 245–257, Feb. 2019, doi: 10.1080/02699931.2018.1445981.

• 42 muscles control all possible expressions
• Restrictions on how faces and heads look subject to physics of illumination and reflectance, 

etc.

• The “manifold” of possible faces is much, much smaller than the combinatoric collection of 
pixel values

https://doi.org/10.1080/02699931.2018.1445981


GPT-2 (2019)

System Prompt (human-written)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, 
previously unexplored valley, in the Andes Mountains. Even more surprising to the 
researchers was the fact that the unicorns spoke perfect English.

Model Completion (machine-written, 10 tries)

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. 
These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd 
phenomenon is finally solved.

https://openai.com/index/better-language-models/

9

https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/


This Person Does Not Exist (2020)

https://thispersondoesnotexist.com
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Latent Diffusion (2021)

https://arxiv.org/abs/2112.10752
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Image Interpolation (2022)
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Axel Sauer, Katja Schwarz, and Andreas Geiger. 2022. StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets. In ACM 

SIGGRAPH 2022 Conference Proceedings (SIGGRAPH '22). Association for Computing Machinery, New York, NY, USA, Article 

49, 1–10. https://doi.org/10.1145/3528233.3530738 

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical text-conditional image generation with CLIP Latents. arXiv:2204.06125

https://doi.org/10.1145/3528233.3530738
https://arxiv.org/abs/2204.06125


Conditional synthesis (2022)
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Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans, T., Fleet, D., & Norouzi, M. (2022a). Palette: Image-to-image diffusion models. ACM SIGGRAPH, (link) 

https://dl.acm.org/doi/abs/10.1145/3528233.3530757


“Emergent Abilities of Large Language Models.”(https://arxiv.org/abs/2206.07682) J. Wei et al., Oct. 26, 2022.

Emergent Abilities of Language Models (2022)
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Segment Anything (2023)

Source: https://segment-anything.com
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Time Series Forecasting (2024)

https://research.google/blog/a-decoder-only-foundation-model-for-time-series-forecasting/
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Image/Video/Music 
Generation (2024)

Write a short pop song about 
students wanting to learn about 
neural networks and do great 
things with them.

A teenage superhero fighting crime in an urban setting 
shown in the style of claymation.

17https://sora.com 
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What do these examples have in common?

• Very complex relationship between input and output

• Sometimes may be many possible valid answers

• But outputs (and sometimes inputs) obey rules

Language obeys 
grammatical rules

Natural images also 
have “rules”

18UDL



Any Questions?

19



Why Deep Learning?

• Why do we need deep learning for these problems?
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Universal Function Approximation

• A big enough neural network can approximate any function.
• Does not require deep learning.

• To fit or overfit?
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Layers of Abstraction

• Many layers may map 
to progressively 
developing concepts 
or abstractions.

http://playground.tensorflow.org/ 
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Parameter Sharing

Source: https://en.wikipedia.org/wiki/Convolutional_neural_network
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Composability

Sources:

Signature Verfication using a “Siamese” Time Delay Neural Network 
(1993)

Plenoxels: Radiance Fields without Neural Networks (2022) 24
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Joint Optimization

Do all of these at once –

• Universal function approximation

• Layers of abstraction

• Parameter sharing

• Composability

25



Differentiable Computations

• Can the partial derivative of “output quality” be computed with 
respect to every input and every parameter in the system?
• Parameter sharing

• Composability

• Joint Optimization

• Gradient descent as a universal algorithm!
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Deep Learning with Neural Networks

• Universal function approximation
• Deep neural networks tend to be able to fit more complex patterns with 

fewer parameters.

• Some toy problems have probable exponential gaps between shallow and 
deep network sizes.

• Layers of abstraction
• Happens automatically but many parts not well understood.

• Train with gradient descent!

27



Deep Learning without Neural Networks

• Universal function approximation and layers of abstraction must be 
designed?

Source: Plenoxels: Radiance Fields without Neural Networks (2022)
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Better Generalization?

Source: Double Descent Demystified: Identifying, Interpreting & 
Ablating the Sources of a Deep Learning Puzzle

29

https://arxiv.org/pdf/2303.14151
https://arxiv.org/pdf/2303.14151


Any Questions?
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Perceptrons

“The Perceptron: A Probabilistic Model For Information Storage And 
Organization in the Brain”
by Rosenblatt (1958)

• Simple formula

• Simple updates

Image Source: https://en.wikipedia.org/wiki/Perceptron
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Positive Perceptron Results

• Can solve any problem where the classes
are linearly separable.

Sources: https://en.wikipedia.org/wiki/Perceptron
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Negative Perceptron Results

• Can only solve problems where the classes
are linearly separable.

• This result led to an “AI winter”.

Sources: https://en.wikipedia.org/wiki/Perceptron (modified)
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Multilayer Perceptrons

● Limits of Perceptrons were misunderstood
● Did not apply to general neural network configurations

● One layer sufficient for universal approximation.

Image source: Understanding Deep Learning



Lingering Issue

• Negative result does not apply, but how exactly do we wire and train 
them?

Image source: 
https://www.reddit.com/r/aww/comments/236k8s/hurumph/
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How to Train Multilayer Perceptrons
Neural Networks

???
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Backpropagation

• We can efficiently calculate gradients and update our models.
• This is “gradient descent”.

Image source: Understanding Deep Learning
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Difficulties Training 5-Layer Neural Networks

• But this did not work reliably for deeper networks…
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Computer Vision as
Inverse Computer Graphics (not a tangent)
Paraphrase of Geoffrey Hinton -

If we can briefly describe a short description of an object well enough 
to draw it, then we must have captured the essence of the object?
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Auto-Encoder Idea

• If we can build an architecture like this, then 
the small “code layer” must have most of the 
important information?

Source: Reducing the Dimensionality of Data 
with Neural Networks (2006)
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Auto-Encoders and
Boltzmann Machines
• Instead of training the neural networks like in the 

last slide, they used restricted Boltzmann 
machines to build one layer at a time.
• Mapping had to work both ways.

• Then made neural networks imitating those mappings.

Source: Reducing the Dimensionality of Data with 
Neural Networks (2006)
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Fine-Tuning Pre-Trained Networks

42

• After the conversion from restricted Boltzmann 
machines to neural networks, gradient descent 
can be used to make the blurry decoding sharper.

Source: Reducing the Dimensionality of Data with 
Neural Networks (2006)
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Auto-Encoder Latents for Classification

• Applied this technique to MNIST data set.

• Results (error rates):
• 1.6% for randomly initialized neural networks (previous)

• 1.4% for support vector machines (previous)

• 1.2% using w/linear model based on code layer. 

Source: Reducing the Dimensionality of Data with Neural Networks 
(2006)
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Deep Learning from Scratch

• After the previous work, we started figuring out what we were doing 
wrong and learned how to train deep neural networks directly.

• This will be the first 1/3 of this course…

44



Any Questions
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Book

• Published December 2023

• http://udlbook.com 
• Free PDF there or buy at BU 

bookstore

• Used heavily for 1st half of the 
course, and a bit at the end too
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Lecture Time

• Nominally 1h45m.

• Practically 1h15m?
• Depends on the lecture. 

• I will be available if the lecture does not take the whole slot.

47



Course Web Site

• https://dl4ds.github.io/fa2025/

• Piazza and Gradescope links here.

• Syllabus here too (scroll to the bottom)
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Generative AI Assistance (GAIA) Policy
https://dl4ds.github.io/fa2025/index.html#gaia-policy 

1. Give credit to AI tools whenever used, even if only to generate ideas rather 
than usable text, illustrations or code.

…

3. When using AI tools on _coding_ assignments, unless prohibited
1. Add the prompt text and tool used as comments before the generated code.  Clarify 

whether the code was used as is, or modified somewhat, moderately or significantly.

…

5. Use AI tools wisely and intelligently, aiming to deepen understanding of subject 
matter and to support learning.

Focus on your learning objectives!

50
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Please, no AI Slop or Verbosity!

Most assignments will be focused on implementing techniques covered 
in class, but you will sometimes be asked questions with text answers. 
For example, you may be asked to explain, motivate or otherwise argue 
for an approach. In those cases, you are expected to give a concise and 
direct answer and not be unnecessarily verbose. Points may be 
deducted for poorly written responses.

^^ in the formal syllabus.
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You may use generative AI but use it well!

• Don’t waste the grader’s time.

• Don’t lose points for
• Saying it is such an interesting question…

• Answering a couple other questions!

• Answering the next question too.

• Making your answer pretty with redundant headings or emojis.

• Repeating something an LLM hallucinated.

• Be concise and to the point.

• Submit something better than ChatGPT!
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Grades

• Late submissions up to 2 days late

• 1% penalty per hour

53

Item Percentage

Discussions (due at end of discussion) 35%

Homework (~1 week each) 25%

Projects (~2 weeks each) 40%



Feedback

54
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